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Objective
Model collections of convolved data points

General Voting  Bulk RNA-seq Images

observation district vote tally sample image

feature issue or candidate gene expression level pixel

particle individual voter one cell light particle

factor voting cohort cell type visual pattern
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Related Models
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Mixture models assign each 
observation to one of K clusters, or 

factors.
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Admixture models represent 
groups of observations, each with its 

own mixture of K shared factors.
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Decomposition models 
decompose observations into 

constituent parts by representing 
observations as a product between 
group representations and factor 

features.
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Deconvolution models (this 
work) similarly decompose, or 
deconvolve, observations into 

constituent parts, but also capture 
group-specific (or local) fluctuations 

in factor features.
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How do     vote in district A?
A

A B C

…

B

C D

E
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local factors
(observation-specific)
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Paisley, 2012

β′�k | α0 ∼ Beta(1,α0)

βk = β′ �k

k−1

∏
ℓ=1

(1 − β′�ℓ)



Our Model

HDP

Paisley, 2012

β′�k | α0 ∼ Beta(1,α0)

βk = β′ �k

k−1

∏
ℓ=1

(1 − β′�ℓ)

π′�n,k | α, βk ∼ Gamma(αβk,1)

πn,k =
π′�n,k

∑∞
ℓ=1 π′�n,ℓ
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Our Model
μk,m | μ0, σ0 ∼ 𝒩(μ0, σ0)

Σk | ν, Ψ ∼ 𝒲−1(Ψ, ν)

x̄n,k | πn,k, μk, Σk ∼ 𝒩M (μk,
Σk

Pnπn,k )

Pn | ρ ∼ Poisson(ρ)



Our Model

yn,m | x̄n, πn ∼ f g (
∞

∑
k=1

πn,k x̄n,k,m)
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Variational Inference

intractable posterior p
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approximation q

Variational Inference

intractable posterior p

black box variational inference (Ranganath, 2014)  
split-merge procedure (Bryant, 2012) to learn K



BBVI overview
Ranganath et al., 2014

∇λ[z]ℒ = 𝔼q [∇λ[z]log q(z | λ[z])(log pz(y, z, …) − log q(z | λ[z]))]

We want to estimate   fz



BBVI overview
Ranganath et al., 2014

∇λ[z]ℒ = 𝔼q [∇λ[z]log q(z | λ[z])(log pz(y, z, …) − log q(z | λ[z]))]

We want to estimate   fz

Which has corresponding 
variational parameter     fλ[z]



BBVI overview
Ranganath et al., 2014

∇λ[z]ℒ = 𝔼q [∇λ[z]log q(z | λ[z])(log pz(y, z, …) − log q(z | λ[z]))]

We want to estimate   fz

Which has corresponding 
variational parameter     fλ[z]

     is 
the set of 

all variational 
parameters

λ



BBVI overview
Ranganath et al., 2014

∇λ[z]ℒ = 𝔼q [∇λ[z]log q(z | λ[z])(log pz(y, z, …) − log q(z | λ[z]))]

We want to estimate   fz

Which has corresponding 
variational parameter     fλ[z]

     is 
the set of 

all variational 
parameters

λ

The gradient of 
the ELBO



BBVI overview
Ranganath et al., 2014

∇λ[z]ℒ = 𝔼q [∇λ[z]log q(z | λ[z])(log pz(y, z, …) − log q(z | λ[z]))]

We want to estimate   fz

Which has corresponding 
variational parameter     fλ[z]

     is 
the set of 

all variational 
parameters

λ

The gradient of 
the ELBO

≈ ∇̃λ[z]ℒ
If we can approximate this gradient, we can use 
standard stochastic gradient ascent to update     .λ[z]



BBVI overview
Ranganath et al., 2014

∇λ[z]ℒ = 𝔼q [∇λ[z]log q(z | λ[z])(log pz(y, z, …) − log q(z | λ[z]))]

We want to estimate   fz

Which has corresponding 
variational parameter     fλ[z]

     is 
the set of 

all variational 
parameters

λ

The gradient of 
the ELBO

=
1
S

S

∑
s=1

[∇λ[z]log q(z[s] | λ[z])(log pz(y, z[s], …) − log q(z[s] | λ[z]))]

≈ ∇̃λ[z]ℒ
If we can approximate this gradient, we can use 
standard stochastic gradient ascent to update     .λ[z]

Average over 
S samples

From the variational distribution            
z[s] ∼ q(z | λ[z])



split/merge overview
Bryant and Sudderth, 2012

initialize with fixed K

iterate until 
batch convergence

consider splitting 
each factor

consider merging 
some factors

full convergence



split/merge overview
Bryant and Sudderth, 2012

initialize with fixed K

iterate until 
batch convergence

consider splitting 
each factor

consider merging 
some factors



split/merge overview
Bryant and Sudderth, 2012

initialize with fixed K

iterate until 
batch convergence

consider splitting 
each factor

consider merging 
some factors



split/merge overview
Bryant and Sudderth, 2012

initialize with fixed K

iterate until 
batch convergence

consider splitting 
each factor

consider merging 
some factors

initialize 
variational 
parameters

update variational 
parameters 

(one iteration)

accept / reject 
based on ELBO
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initialize with fixed K

iterate until 
batch convergence

consider splitting 
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Bryant and Sudderth, 2012

initialize with fixed K

iterate until 
batch convergence

consider splitting 
each factor

consider merging 
some factors

λS[μk′�] = λ[μk] λS[μk′�′�] = λ[μk] + ε

λ[μk]



split/merge overview
Bryant and Sudderth, 2012

initialize with fixed K

iterate until 
batch convergence

consider splitting 
each factor

consider merging 
some factors

λS[Σk′�] = λ[Σk] λS[Σk′�′�] = λ[Σk]

λ[Σk]



split/merge overview
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initialize with fixed K

iterate until 
batch convergence

consider splitting 
each factor

consider merging 
some factors

λS[xn,k′�] = λ[xn,k] λS[xn,k′�′�] = λ[xn,k]

λ[xn,k]



split/merge overview
Bryant and Sudderth, 2012

initialize with fixed K

iterate until 
batch convergence

consider splitting 
each factor

consider merging 
some factors

λM[βk] = λ[βk′�] + λ[βk′ �′�]

λM[πn,k] = λ[πn,k′ �] + λ[πn,k′�′ �]

λM[μk] =
λ[βk′ �]λ[μk′�] + λ[βk′�′�]λ[μk′�′ �]

λ[βk′ �] + λ[βk′ �′ �]

…



set K to an initial value 

initialize variational parameters 

repeat until convergence: 

  repeat until batch convergence: 

    update variational parameters for 

                     using BBVI 

    update variational parameters for  

            _using analytic updates 

  split/merge latent factors, defining new K 

            and updating variational parameters 

            accordingly

x̄, π, P, β

μ, Σ

Algorithm Pseudocode

















Results on Simulated Data
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2016 Election in California
https://github.com/datadesk/california-2016-election-precinct-maps

43.9% registered Democrats 
28.9% registered Republicans 
27.2% other parties / unregistered

caveat: these are 
very preliminary results





Prop 63: Background 
Checks for Ammunition 
Purchases and Large-
Capacity Ammunition 

Magazine Ban



Prop 58: Non-English 
Languages Allowed in 

Public Education





(gun control)

(non-english in schools)



(gun control)
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