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Claim 1: The recommendation 
feedback loop causes 

homogenization of user behavior.
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Claim 2: Users experience 
losses in utility due to homogenization 

effects; these losses are distributed unequally.
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Claim 3: The feedback loop 
amplifies the impact of recommendation systems 

on the distribution of item consumption.
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Why do we need to think about algorithmic confounding?

better evaluation of recommendation systems

understand the impacts on human behavior

design better systems to  
increase fairness and social welfare


